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ABSTRACT

'his report summarizes the major progress made during the support of

NATO Research Grant 1639. Chapter 1 was written by K. S. Fu, Chapter II

by J. Kittler and L. F. Pau, and Chapter III by L. F. Pau.

Chapter I On Hybrid Approaches to Pattern Recognition

Chapter II Automatic Inspection by Lots in the Presence of Classification
Errors .

Chapter III Visual Screening of Integrated Circuits for Metallization
Faults by Pattern Analysis Methods, .
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CHAPTER I

ON HYBRID APPROACHES TO PATTERN RECOGNITION

1.1 Introduction

There are many methods proposed for designing a pattern recognition

system. These methods can primarily be grouped into two major approaches;

namely, decision-theoretic or discriminant approach [1-9), and syntactic or

structural approach [10-12]. From a more general viewpoint, these ap-

proaches can be discussed within the same framework in terms of pattern

representation and decision-making (based on a given pattern representa-

tion). A block diagram of a pattern recognition system, based on this gen-

eral point of view is given in Figure 1. The subproblem of pattern

representation involves primarily the selection of representation. The sub-

problem of decision-making involves primarily the selection of decision cri-

terion or similarity measure. Other approaches include template-matching

[13, problem-solving models [14), category theory [15) and relation theory

[16).

In the template-matching approach, a set of templates or prototypes,

one for each pattern class, is stored in the machine. The input pattern

with unknown classification is matched or compared with the template of each

class, and the classification is based on a preselected matching criterion

or similarity measure (e.g., correlation). In other words, if the input

pattern matches the template of ith pattern class better than it matches any

other templates, then the input pattern is classified as from the ith pat-

tern class. Usually, for the simplicity of the machine, input patterns and

the templates are represented in their raw-data form, and the decision-

making process is nothing but matching the unknown input to each template.
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The template-matching approach has been used in some existing printed-

character recognizers and bank-check readers [13,19J. The disadvantage of

this approach is that it is sometimes difficult to select a good template

for each pattern class, and to define an appropriate matching criterion.

This difficulty is especially remarkable when large variations and distor-

tions are expected in the patterns under study. Recently, the use of flexi-

ble template-matching or "rubber mask" techniques has been proposed [17).

1.2 Decision-Theoretic Approach

In the decision-theoretic approach, a pattern is represented by a set

of N features or an N-dimensional feature vector, and the decision-making

process is based on a similarity measure which, in turn, is expressed in

terms of a distance measure or a discriminant function. In order to take

noise and distortions into consideration, statistical and fuzzy-set methods

have been proposed [501. The characterization of each pattern class could

be in terms of an N-dimensionaL class-conditional probability density func-

tion or a fuzzy set, and the classification (decision-making) of patterns is

then based on a (parametric or nonparametric) statistical decision rule or

(fuzzy) membership function. A block diagram of a decision-theoretic pat-

tern recognition system is given in Figure 2.

It should be noted that the template-matching approach could be regard-

ed as a special case of the decision-theoretic approach. In such a case,

each pattern is represented by a feature vector, and the decision-making

process is based on a simple similarity (matching) criterion such as the use

of correlation.

Applications of decision-theoretic pattern recognition include charac-

ter recognition [13,18,19], biomedical data analysis and diagnostic
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decision-making [20-22), remote sensing [18,23), target detection and iden-

tification [3,24), failure analysis and diagnosis of engineering systems

[25,26), machine parts recognition and inspection in the automation of

manufacturing processes [27-30), processing of seismic waves [243, modeling

of socio-economic systems [31), and archaeology (classification of ancient

objects) [323.

1.3 Syntactic Approach

In the syntactic approach, a pattern is represented as a string, a tree

or a graph of pattern primitives and their relations. The decision-making

process is in general a syntax analysis or parsing procedure. Special cases

include the use of similarity (or distance) measures between two strings,

two trees, or two graphs [33). A block diagram of a syntactic pattern

recognition system is given in Figure 3.

Conventional parsing requires an exact match between the unknown input

sentence and a sentence generated by the pattern grammar. Such a rigid re-

quirement often Limits the applicability of the syntactic approach to

noise-free or artificial patterns. Recently, the concept of similarity

measure between two sentences and between one sentence and a Language has

been developed. Parsing can be performed using a selected similarity (a

distance measure or a Likelihood function), and an exact match becomes un-

necessary. Such a parsing procedure is called "error-correcting" parsing

[34).

It should be noted that the template-matching approach could also be

regarded as a special case of the syntactic approach. In such a case, each

pattern is represented by a string (or tree, or graph) of primitives and the

decision-making process is based on a similarity or distance measure between
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two strings (or two trees, or two graphs).

Applications of syntactic pattern recognition include character recog-

nition 135-37], waveform analysis C36,38,39], speech recognition [36,40),

automatic inspection [41,42], fingerprint classification and identification

[36,43], geological data processing [44), target recognition [45), machine

part recognition [36,46) and remote sensing [36).

There are at least four ways to mix the decision-theoretic approach and

the syntactic approach. They are: i) decision-theoretic followed by syn-

tactic approach, (ii) use of stochastic languages, (iii) stochastic error-

correcting syntax analysis, and (iv) matching of stochastic graphs. In the

following sections, we briefly describe each of these mixed approaches.

1.4 Decision-theoretic followed by syntactic approach

In this approach, pattern primitives are recognized by a decision-

theoretic method and pattern structures are anaLyzed by a syntactic method.

For example, in speech recognition, speech wave segments can be recognized

by a decision-theoretic method. Strings of these segments, characterized by

a set of syntax rules, provide the final description of continuous speech

waveforms [18,36,47). Similarly, such a hybrid approach can be used for EEG

analysis [39). In LANDSAT data interpretation, each pixel in a LANDSAT im-

age can be classified by a decision-theoretic method (e.g., the maximum-

likelihood classification rule) on the basis of the four-band spectral meas-

urement. Structural (or spatial) relations among various pixels can be

described by a syntactic method. Specifically, the structure of highways

(or rivers) can be represented by trees with "concrete-like" or water pixels

and characterized by a tree grammar. Consequently, the recognition of high-

ways from all concrete-like pixels can be easily accomplished by using a
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tree automaton [18,483. The recognition of rivers from all the pixels clas-

sified as water can be similarly performed.

Recently, a shape recognition procedure with two types of primitive has

been proposed [493. The two primitives, curve primitive and angle primi-

tive, are described by attributes and recognized by a decision-theoretic

method. Strings of curve and angle primitives are used to represent the

outer boundaries of an object with different starting points, and are

characterized by a set of attributed syntax rules. Recognition of object

shapes is accomplished by parsing the strings describing object boundaries

with respect to the syntax rules. The structural or syntactic information

contained in the syntax rules is, in fact, used to improve the primitive

recognition accuracy. In other words, primitive recognition and structural

analysis (or parsing) are carried out in one stage rather than one following

the other in two separate stages. With the addition of error-correcting

technique to the attributed shape grammar, such a hybrid approach can be

used for recognition of distorted and partial shapes [65].

1.5 Use of stochastic languages

In order to describe noisy and distorted patterns under ambiguous si-

tuations, the use of stochastic languages has been suggested [103. With the

probabilities associated with grammar rules, a stochastic grammar generates

sentences with a probability distribution. The probability distribution of

the sentences can be used to model the noisy situations.

A stochastic grammar is a four-tuple Gs = (VN,VT,PsS) where VN is a

finite set of nonterminals, VT is a finite set of terminals, S c VN is the

start symbol, and Ps is a finite set of stochastic productions. For a sto-

chastic context-free grammar, a production in Ps is of the form
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pij

A j, Ai C V N, a C (VNU VT)*

where pij is called the production probability. The probabiLity of generat-

ing a string x, called the string probability p(x), is the product of all

production probabilities associated with the productions used in the genera-

tion of x. The language generated by a stochastic grammar consists of the

strings generatLj by the grammar and their associated string probabilities.

By associating probabilities with the strings, we can impose a proba-

bilistic structure on the language to describe noisy patterns. The proba-

bility distribution characterizing the patterns in a class can be interpret-

ed as the probability distribution associated with the strings in a

language. Thus, statistical decision rules can be applied to the classifi-

cation of a pattern under ambiguous situations (for example, use the

maximum-likelihood or Bayes decision rule). A block diagram of such a

recognition system using maximum-likelihood decision rule is shown in Figure

4. For a given stochastic finite-state grammar Gs, we can construct a sto-

chastic finite-state automaton to recognize only the language L(G s ) [10].

For stochastic context-free language, stochastic syntax analysis procedures

are in general required. Because of the availability of the information

about production probabilities, the speed of syntactic analysis can be im-

proved through the use of this information. Of course, in practice, the

production probabilities will have to be inferred from the observation of a

relatively large number of pattern samples. When the imprecision and uncer-

tainty involving in the pattern description can be modeled by using the fuz-

zy set theory, the use of fuzzy language for syntactic pattern recognition

has recently been suggested [50].
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1.6 Stochastic Error-Correcting Syntax Analysis

Recently, error-correcting syntax analysis has been proposed for the

recognition of noisy and distorted patterns [33,51). Referring to Fig. 3, a

segmentation error can be represented by a deletion or insertion of a primi-

tive in a sentence. A primitive recognition error can be expressed as a

substitution of one primitive by another. With the introduction of proba-

bilities of substitution, deletion and insertion errors, a stochastic model

of syntax errors can be formulated. Using this model, the probability of

deforming a sentence x to a sentence y, q(ylx) can be computed. The

maximum-likelihood error-correcting parsing algorithmtt is to search for a

sentence x, x c L(G ) such that

q(ylx) P(x) = max {q(ylz) p(z) I z c L(G s)
z

where p(z) is the probability of generating z by the stochastic (pattern)

grammar Gs. The term of q(ylx) p(x) is called the probability that a sen-

tence y is an error-deformed sentence of L(Gs ) and is denoted as q(ylGs).

By adopting the method of constructing covering grammars used by Aho

and Peterson [34), we can construct a stochastic error-induced grammar from

the original stochastic context-free (pattern) grammar to accommodate the

stochastic deformation model. A modified Earley parser for the stochastic

error-induced grammar is proposed to implement the search of the most likely

error correction [51). A more general deformation model (including the use

of attributed grammars) and its corresponding Bayes error-correcting recog-

nition system has recently been reported [52,66,67).
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1.7 Matching of Stochastic Graphs

Relational graphs are used in syntactic pattern recognition to

represent the structural information of patterns [10]. The nodes in a rela-

tional graph denote subpatterns and pattern primitives, and the branch

between two nodes represents the relation between subpatterns and/or primi-

tives. Recently, Tsai and Fu [53] have proposed to extend the stochastic

deformation model described in Section 1.6 to error-correcting graph match-

ing. Attributed relationaL graphs for syntactic pattern recognition are

first defined. A stochastic deformation model for attributed relational

graphs is then formulated. OnLy the case where the deformation does not af-

fect the structure of the underlying unLabeled graph but only corrupts the

information contained in the primitive and relations is considered. Such a

deformation is called graph-preserved deformation. Pattern deformation pro-

babilities can be calculated from primitive deformation and reLation defor-

mation probabilities. An ordered-search algorithm is proposed for determin-

ing the maximum-likelihood error-correcting isomorphisms of attributed rela-

tional graphs.

1.8 Remarks

The decision-theoretic followed by syntactic approach has been the most

popular hybrid approach. The approach is simple to apply. However, noise

and distortions are only considered at the local or primitive level. Seg-

mentation error and structure distortion are not taken into consideration.

The approach of using stochastic languages can certainly take care of noise

and distortion at both primitive and structure levels, particularly, when

the primitives are recognized by decision-theoretic methods. Practical ap-

plications include ECG interpretation and fingerprint classification
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[54,55]. Unfortunately, a large number of training samples is often re-

quired to accurately infer the production probabilities. Segmentation and

primitive recognition errors are explicitly considered in error-correcting

syntax anaLysis. Probabilities for different errors can be estimated (or

subjectively assigned) from the performance evaliation of segmentation and

primitive recognition devices. One appliudtion of this approach is the

recognition of spoken words and phrases [56J. In practice, parsing time may

need to be sped up by using sequential or parallel parsing techniques

[57,58]. Attributed grammars can be used to provide both syntactic and se-

mantic information for pattern description [10,49]. A syntactic-statistical

approach to pattern recognition based on attributed grammars has recently

been proposed [661. Attributed relational graphs are regarded as a more

general model in describing two and three dimensional patterns. It is anti-

cipated that the speed of error-correcting graph isomorphisms is rather

slow. The use of parallel processing could be one way to speed up the pro-

cedure. The practical utility of this approach still needs to be tested.

The idea of using hybrid approaches in solving practical pattern recog-

nition problems is not new [10,59-64]. In practice, only the decision-

theoretic followed by syntactic approach can be easily applied. There is

certainly a need of further studies on other possibilities of mixing the

decision-theoretic and the syntactic approaches.

i'
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Fig. 1. A general pattern recognition system.

Fig. 2. BLock diagram of a decision-theoretical pattern recognition system.

Fig. 3.

Fig. 4. Maximum-Likelihood Syntactic Recognition System.
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CHAPTER II

AUTOMATIC INSPECTION BY LOTS IN THE

PRESENCE OF CLASSIFICATION ERRORS

2.1 Introduction

Automatic inspection of manufactured products is a very important ap-

plication area of pattern recognition. The muLtifoLd goals of automating

this particular aspect of industrial production include raising the standard

of quality control by improving the reLiabiLity of the existing inspection

channeLs, speeding up the inspection process to keep up with the increasing

production outputs due to mechanization and automation of industrial

processes, relieving the human element in the inspection process from carry-

ing out repetitive and boring tasks and, Last but not Least, minimizing the

cost of quality controL. To date a number of promising applications of pat-

tern recognition techniques to various automatic inspection problems have

been reported. In particular, methods for automaticaLLy inspecting reed

switches have been described by Jarvis Ell and Van DaeLe et aL C2]. Au-

tomatic systems for inspection of printed circuit boards [3) and LSI circuit

masks [4) have recently been developed. Pattern recognition techniques have

been applied to the problem of inspecting pharmaceutical products, [5) mov-

ing metal surfaces, C63 gas meters [7) etc.

IdeaLLy, in quality control one would Like to aim at inspecting every

single item manufactured. In practice, however, 100% inspection is not aL-

ways economicaLLy feasible even assuming an advanced stage of automation and

it then becomes necessary to control the quality of a smaLL sample of these

items in each Lot. On the basis of the number of defective items in the

sample set a decision regarding acceptance or rejection of the whole Lot is

then made.
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The philosophy of the quality control by lots is to reduce inspection

costs by finding the minimum sample size required to ensure that each lot of

products meets the quality standards specified by the consumer while keeping

at a low level the manufacturer's risk of having to inspect all the items in

any lot of acceptable quality or even of having to discard these items. The

design of a two-sided acceptance sampling plan for this purpose is based on

a faily of operating characteristics which define the probability of accept-

ing a lot of a given size as a function of the rate of defective items in

the lot. The actual rate of defective items in the sample taken from the

lot serves as the parameter of the family of these functions.

Quality control by lots is a long established approach to industrial

inspection with a well developed methodology [8,12]. Unfortunately, the ex-

isting acceptance sampling plan design techniques are applicable only under

the assumption that the classification of individual items in the sample set

into the categories of defective and non-defective products is error free.

When pattern recognition systems are employed to inspect individual items

this assumption is not necessarily satisfied. The presence of classifica-

tion errors affects the probability distribution of defective items in the

sample set which has to be taken into account when designing an acceptance

sampling scheme.

The effect of classification errors on acceptance sampling plans has

recently been studied by Kittler and Pau [9), who considered the case where

the a priori probabilities of the categories of defective and non-defective

items in the lot differ from those of the mother population. They derived a

system of operating characteristics which are an essential prerequisite for

the design of a suitable acceptance sampling plan. In contrast to the con-

ventional approach, the operating characteristics in their method are
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parameterized in terms of the rate of items classified as defective rather

than the actual rate of defective products, which is unknown. In this

chapter it is assumed that the mixture probability distribution of items in

a given lot has an arbitrary form which cannot be functionally related to

the mother mixture population. Such a situation can arise in an environment

with rapidly changing conditions in the manufacturing process or of the raw

material used. It will be shown in Section 2.3 that in this case the proba-

bility distribution of classification errors cannot be predetermined. Con-

sequently, it is not possible to obtain the operating characteristic which

is required for the design of a conventional two-sided acceptance sampling

plan (plan satisfying both the consumer's and manufacturer's specifica-

tions). Instead, in Section 2.4, a new quality control procedure is pro-

posed which guarantees the product quality levels specified by the consumer.

First, however, in Section 2.2, the model considered and the essential

mathematical preliminaries will be introduced.

2.2 Preliminaries

Let x = [xl...x pT be a p-dimensional pattern feature vector represent-

ing an item to be inspected, with T denoting the transpose. We denote the

classes of non-defective and defective products by w and w2 respectively.

Further let the pattern representation space be partitioned into non-

overlapping regions SI and S2 associated with classes w, and w2" Then any

pattern vector x in the region Si will be considered as belonging to class

Wi" i.e. the decision rule determining whether x represents a good or defec-

tive item can be stated
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assign x to cI if x £ S. (1)

The regions Si could be determined using standard pattern classifica-

tion learning algorithms 10] on the basis of the information conveyed by a

training data set with Labelled samples. Alternatively (and this is often

the case in quality control) regions Si are defined by prespecifying toler-

ances on the product characteristics as embodied by feature measurements x

j = 1,2,...,p.

In the following we assume that the a posteriori class probability

functions P(wilx) are known at every x. This assumption implies that either

the physical processes involved in generating patterns from classes W1 and

W2 can be modelled with a sutficient accuracy or the training data set is

large enough to allow functions P(wilx) to be estimated with negligible bias

and variance.

As pointed out in the introductory section, in the model considered in

this paper it is assumed that the items in a lot are drawn from a mixture

probability distribution characterized by a density function (x). Then the

classification error of type I giving the rate of samples from class be-

ing assigned to class w2 b, decision rule (1) is defined as

l= f P(wllx)O(x)dx. (2)

S2

Similarly, the classification error of type II is given by

e2 = f P(w2lx)(x)dx. (3)
SI

The rate of samples classified to wi" ei, is given
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f O(x)dx,(4
SI

while the true rate of defective and non-defective items P and Pn can be

written respectively as

f P(W 21x)o(x)dx (5)

and

Pn = fP(JIlx)o(x)dx. (6)

Note that the rate of items classified as defective by our decision

making system can be expressed as

C2  f P( 1I x) (x)dx + f P(W2 Jx) (x)dx. (7)
S 2  S2

Utilizing equations (2), (3) and (5) we get

2 = e1 + P -2 (8)

As in the case of the model discussed in [9], the only observable quan-

tity in equation (8) is E2 " However, in contrast to that model, here the

probability distributions of errors eI and e2 cannot be approximated by ap-

propriate binomial distributions. The reason for this is that the expected

value of e. which could be used as the parameter of an approximating binomi-

al distribution is not known. Consequently the approach to designing an ac-

ceptance sampling plan for quality control proposed in [9J cannot be adopt-

ed. In the following section the probability distribution of the rate of

defective items in the sample set taken from a lot will be derived. This

distribution will then be used as a basis of a new quality control scheme
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proposed in Section 2.4.

2.3 The Probability Distribution of the Rate of Defective Items

It was shown in [9J that in order to check the quality of a given lot

of products in the case where the probability structure underlying the dis-

tribution of items in a lot differs from that of the training data only in

the a priori probabilities of classes w 1 and w2" it was sufficient to ob-

serve the realization of variable a2 and compare it with the predetermined

threshold. Moreover, detailed knowledge of the a posteriori probabilities

of classes w and w2 for each element x of the test set was not required.

In the case of the model considered here the situation is somewhat dif-

ferent. We can also observe C2 by simply examining the position of pattern

x in the test set with respect to region S i  However, since O(x) is assumed

to be of a non-parametric form and in general, changing from one lot to

another, the probabiLity distribution of classification errors must be

determined for each test set separately. This implies that the operating

characteristics cannot be precomputed and an alternative strategy must be

adopted. Moreover, in order to determine the probability distribution of

errors, it must be possible to observe the class a posteriori probabilities

for every x. It is apparent that from the computational point of view any

quality control procedure for the present model will be considerably more

involved.

Let us denote the actual rate of misclassified patterns from class

W 3-i" i = 1,2, by T3-i (realization of e3 _i). It has been shown elsewhere

11] that the distribution function of T3- i is given as
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k k j-1
g(r3-i = k IC) = (1/k) L {(-l) g(T3 i = k - jHe4i

j=l

x Pi I x I k =1,2,.. .,n-e in, (9)
t=1 L Pwilxt) J

with

n-nE.

g(T3-i = Olei) =  ] ' l - P(Wilxt)].
t=1

It cannot be over emphasized that the probability distribution in (9)

is correct only under the assumption that P(wIx) is known exactly. In

practice this assumption will not be satisfied. However, here we assume

that the cardinality of the training data set is large enough so that

P(ilx) can be estimated with a sufficient precision. The alternative would

be to take the probability distribution of estimates of P(wix) into account

in the analysis. However, from the point of view of computational complexi-

ty, this solution would make the procedure proposed impracticable.

The probability distribution of P in equation (8) is, of course, given

by the hypergeometric distribution. Since we know the distributions of all

the quantities appearing in equation (8) we can now evaluate the probability

that given the number of defective in the Lot, d, C2 will take on a particu-

lar value Z2. This probability is given as the sum of the probabilities of

occurrence of each triplet P*, TI and T2 yielding E2, i.e.

1 2 2
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Pr(c 2 = C2Id) = Pr(FP = d)Pr( T= *1ie)Pr(T 2 = T11 -

x 6( - p* * 
+ 

T) (10)21 2

P = (k/n) k = 1,2,...,min[n,d]

T1 = (k/E2n) k = 0,1,2,...,E2 n

T2 = (k/ 1n) k = 0,1,2,...,eln ,

where 6(-) is the Kronecker delta function.

We have thus obtained an expression for calculating the probability

that given d the classification system will assign exactly C2n = cn items

into the class of defective. Note however, that function Pr(a 2 = zId) of

argument d is not a probability distribution function. Further, it would be

more convenient to be able to say what is the probability that the lot con-

tains exactly d* bad products given e2 
= z rather than work with the proba-

bility of observing e2 under the various hypotheses. Invoking the Bayes

formula for calculating conditional probabilities we get

Pr(R 2 = C2Id)Pr(d = d*)
Pr(Q

2 = E

We shall assume that a priori probability of occurrence of any value of d is

equally likely. Since there are N + 1 possible values d can assume (d =

• S
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0,1,2,...,N) then

Pr(d = d*) (12)N + 1" (2

The unconditional probability Pr(Q 2 =

PrQc2 = a N PrCQ 2  d). (13)

Thus we can write

Pr(d = ) EPr( 2 = d) (14)

Pr(Q 2 = 2Id)

Using expression (14) we can determine the conditional probability distribu-

tion of random variable d given E2 and, naturally, the cumulative distribu-

tion

d -

P(d)= Pr(d = d*IE 2 = e=). (15)
d*=O

2.4 Acceptance Sampling Strategy

The curve P(d) defines at every point d the probability that, assuming

e 2 has been observed, there are at most d defective items in the lot. On

the other had the curve 1 - o(d) defines for every d the probability that

the lot contains more than d defective products. Based on these observa-

tions we can now propose a quality control test as follows.
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Hypothesis

Null hypothesis H0 (accept the lot)

number of defective d < dT

Alternative hypothesis H1 (reject the lot)

number of defective d > dT"

where dT is a given threshold.

Accept H0 if 1 - p(dT) < 6, otherwise reject H0 . (16)

We shall now summarize the proposed quality control scheme.

1. Classify elements of the test set of size n taken from a lot to obtain

a = 1,2.

2. Determine the probabiLity distributions of errors e1 and e2 using equa-

tion (9).

3. Evaluate Pr(Q = e * d) for aLL d according to equation (10).

4. Determine the cumulative distribution 1 - o(d) in equation (15).

5. Apply hypothesis test (16).

A few comments are in order here. First of all, there is a difference

between the quality control concepts employed here and in [9]. In the case

of the model discussed in 9J the manufacturer guarantees that the probabil-

ity of a lot with dT or more defective items passing through the quality

control does not exceed 8, i.e. Pr(H 0 acceptedild > dT) < B. On the other

hand, in the present model the manufacturer ensures that the probability of

accepted lots containing dT or more defective items is less than 8, i.e.

Pr(d > dTIHO accepted) < S. Note, however, that for any model we have
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Pr(H acceptedid) > d = Pr(d > d TH 0 accepted) Pr(H accepted) (18)

r(0  - T - TO Pr(dl > d T) (8

Let us consider the relationship (18) in more detail. According to equation

(12) we have

N - d + 1
Pr(d > d T ) = N T I

Further, under the assumption that the a priori probability of accept-

ing H0  equals the a priori probability of the lot containing d < dT defec-

tive items, i.e.

dT

Pr(H 0 accepted) N + (19)

Equation (18) implies

Pr(H acceptedid > d ) < dT <

0 -T hi- d T + 1

provided dT  N - dT + 1. (20)

Thus the quality control scheme developed automatically satisfies the

consumer's risk specifications. It cannot be overemphasized however that

the parallel between these two models can be drawn only under the assumption

of the validity of equation (19) and of the particular model for the distri-

bution Pr(d = d*).

The main shortcoming of the proposed sampling scheme is the lack of any

guidelines for choosing the size of the test set, n. In principle, the ac-

ceptance sampling plan should be applied for several (monotonically increas-

ing) values of n with the quality check terminating when 1 - p(dT) remains
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constant.

The computational burden of such a control scheme could be eased by ap-

proximating distribution (9) to the binomial distribution with parameter e.i

n-nc

ei - 1 1 [1 - P(Wilxt) ]  (21)
n -ne* t=l

xt i

If the accuracy afforded by this approximation were deemed to be satisfacto-

ry it would be possible to precompute a set of parametric acceptance sam-

pling plans as in (9) in the form of a look up table, giving appropriate

values of e 2T for the whole spectrum of combinations of ei, i = 1,2. Since

e. depends on n, the acceptance threshold would have to be determined for
i

the minimum value of n as a function of I and e 2 satisfying the given qual-

ity control specification.

2.5 Conclusions

A pattern recognition system for the inspection of products by Lots has

been studied. It has been shown that in the presence of classification er-

rors the existing acceptance sampling plans cannot be used. An alternative

quality control procedure has been developed for the model assuming an arbi-

trary distribution of patterns in the lot. Computationally the scheme is

very demanding. Some simplification can be achieved by approximating the

actual probability distributions of classification errors with the binomial

distributions of having identical expected values.



-13-

REFERENCES

1. J. F. Jarvis, "Automatic inspection of glass-metal seals," Proc. 4th
Int. Joint Conf. Pattern Recognition, Kyoto, Japan, pp. 936-961 (1978).

2. J. Van Daele, A. Oosterlinck and J. Van Den Berghe, "Automatic visual
inspection of reed relays," Proc. IEEE Comp. Soc. Workshop on PR and
AI, Princeton, NJ (1978).

3. J. F. Jarvis, "Automatic visual inspection of printed wiring boards by

local pattern matching," Proc. SIETEL-ULG Seminar on Pattern Recogni-
tion, Liege, pp. 9-11 (1977).

4. N. Goto, "An automatic inspection system for mash patterns," Proc. 4th
Int. Joint Conf. on Pattern Recognition, Kyoto, Japan, pp. 970-974
(1978).

5. K. Nakamura, K. Edamatsu and Y. Sauro, "Automated pattern inspection
based on boundary length comparison method," ibid., pp. 955-957.

6. L. Norton-Wayne and W. J. Hill, "The automatic classification of de-
fects on moving surfaces," Proc. 2nd Int. Conf. on Pattern Recognition,
Lyngby, pp. 476-478 (1974).

7. J. Kittler, "DeveLopment of the statistical pattern recognition metho-
dology and its application to quality control," Techn. Report ENST-
D-78023, Ecole Nationale Superieure des Telecommunication, Paris
(1978).

8. J. M. Juran, Quality Control Handbook, McGraw-Hill, New York (1963).

9. J. Kittler and L. F. Pau, "Small sample properties of a pattern recog-

nition system in lot acceptance sampling," Proc. 4th Int. Conf. on Pat-
tern Recognition, Kyoto, Japan, pp. 249-257 (1978).

10. K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic
Press, New York (1972).

11. J. Kittler and P. A. Devijer, "The probability distribution of condi-
tional classification errors," IEEE Trans. Pattern Anal. Machine
Intell., Vol. PAMI-2, 259-261 (1980).

12. L. F. Pau, "Controle de qualite statistique," Convention 290939.
Bureau National de Metrologie, Paris (1976).

N
i L~ji



row

CHAPTER III

VISUAL SCREENING OF INTEGRATED CIRCUITS FOR METALLIZATION FAULTS

BY PATTERN ANALYSIS METHODS

3.1 Introduction

As the complexity of integrated circuits (IC's) increases, the testing

problem becomes more and more accute in terms of final production yield and

IC costs El].

- metallization defects (open or short circuits, scratches, migration,

corrosion)

- wire and die bonds (open, shorted, fatigued)

- process faults, esp. oxyde pinholes and diffusions

- surface defects and loose particles

- die cracks, dirty photomasks

- external leads

- dielectric failures

- packaging defects and seals

- thermal mismatch

- violation of design rules

The usual testing procedure includes a suitable combination of the following

basic testing processes [1].

- pre-cap and external visual inspection, and X-ray inspection

- electrical testing (pre-cap and after packaging)

- environmental testing, especially temperature cycling or shocks.

One of the more fundamental constraints about current IC testing pro-

cedures is the fact that those listed above are implemented in sequence, at

many different stages of the manufacturing process [4). This limitation be-

comes even more severe if lot inspection procedures are totally discarded at

MS
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some of these stages, in order to achieve 100% testing throughout the

manufacturing process.

(A) Pre-cap visual inspection: The thorough visual inspection before the

chip is encapsulated is designed to eliminate unreliable circuits from

further processing. The visual inspection is generally carried out by human

operators with the aid of high power and low power microscopes; it includes

essentially the Leads, die and wire bonding, and the topology of the chip.

Rigorous adherence to 100% pre-cap visual inspection prior to encapsulation

is also essential to weed out potentially unreliable circuits that would

otherwise pass all other screening tests. While the effectiveness of pre-

cap visual testing is high, the cost and time related to human operators is

too high.

(B) Electrical testing: Test patterns are usually reserved by the IC layout

to provide for convenient areas for contact probing (in addition to per-

manent leads). These areas are included within the actual circuit die area

to assure the necessary matching of characteristics. In addition to provid-

ing locations for probing with minimum damage to the actual circuits, and

minimum electrical interference, the test pattern may be designed to provide

for components which amplify the signals to be measured [5,6] (Fig. 1). A

prerequisite to the use of the test patterns through probing is the proper

alignment of the IC. Electrical testing does not in general lead to fault

location on the IC, and undetectable failure modes may exist especially when

only limited testing is applied.
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(C) Thermal cycling and shocks: These tests will weed out many future faults

or defects not apparent to visual inspection, in addition to helping local-

ize them. The are e.g. recommended for crystal imperfections, cracked dies,

oxyde pinholes, oxyde shorts, passivation defects, opening of thermal seals,

poor wire bonds. Thermal testing is usually unattended, but lengthy and

costly.

(D) Integrated pre-cap testing: In order to speed up and automate the pre-

cap testing stage, this chapter proposes the concept of integrated pre-cap

testing and pattern analysis methods to implement it. These methods are

developed to allow for a direct interaction with IC design tools. The goal

is defect detection and possible localization by automated IC image analysis

at different wavelengths, while electrical testing and some thermal tests

are carried out, without any test bench transfer. The methods proposed are

not restricted to periodic structures (although they would be simplified by

such assumptions), nor to only vertical/horizontal etchings. They allow for

possibly large geometric or topological deformations, and defect scattering,

and are not based on deformations of reference layouts as usually the case

in the literature. Also, the topological layout is explicitly allowed to be

context sensitive as in reality, as opposed to context free assumptions.

3.2 Automatic Visual Inspection of Masks and IC's

This section briefLy surveys current and past research in this field.

(A) Visual and electrical testing both require test patterns on the IC;

original probe-pad test patterns have been designed which contain visu-

al alignment indicators and probe resistors C5,61. Coarse prior mask
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and IC alignment may be necessary before fine alignment via the test

patterns; line-by-line scanning, or vertical and horizontal boundary

detection then takes place for the estimation of the bias and the tilt

angle of the mask/IC [8,9,10,23]. Coarse IC alignment is often mechan-

ical.

(B) Once a proper fine alignment is completed, pre-cap visual inspection

may get started. All existing automated methods can be divided into

the following three types Ell]:

a. defect enhancement by image filtering

b. image matching

c. pattern matching

In this respect, it is necessary to point out the fact that most

methods and systems were actually designed as extensions of printed

circuit board/drawing (PCB) inspection systems, or are at least res-

tricted to PCB inspection [12,13,14,15,16]. Consequently, the sensors

used are exclusively TV or CCD line-by-line scanners [13], and many

problems specific to IC's/masks have been neglected. At the same time,

no advanced pattern recognition methods have been considered or

developed for this IC application (inspection).

(C) Defect enhancement by image filtering is done by operating on the one-

dimensional Fourier transform or Vander Lught fiLter of each scan, and

by detecting peaks in the transform [17,18]. This approach is res-

tricted to strictly periodic structures, and remains sensitive to posi-

tioning errors and tolerances.

(D) Image matching consists of comparing adjacent similar chip patterns on

the same die or mask, with additional comparison to reference patterns

[11,19,20,24]. Defects are recorded as differences by image subtrac-
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tion or by correlation [21,22). Especially comparison on adjacent dies

of 50 u x 50 P windows has been investigated and is considered a stan-

dard procedure. The matching is however subject to small edge

misaLignment, edge coloring, misregistration, human errors, and image

enhancement remains necessary.

(E) Pattern matching is related to the production of small (5x5 or I1x0

pixels) reticles (straight segments, corners, spots). It has been

shown, in the case of PCB, that only a moderate, e.g. 500, number of

all possible mask patterns are needed to describe all areas in the true

Layout [12) for one layer at a time. These features, usualLy binary,

are then correlated with a reference for failure detection.

(F) In general, however, these three approaches are organized into a

hierarchical inspection process, with various levels according to the

resolution, area and field of view [27]. Microfaults revealed through

visual or other means (X-rays), depending on the nature of the sub-

strate, are import,.nt. It has been shown that such faults tend to

cluster in groups with varying spacings, and that fault density clus-

tering may be considered for yield predictions [4,29].

3.3 Integrated Pre-Cap Testing

This testing procedure has been defined in Section 3.1(D). At the

design stage, it uses chip/mask layout by computer-aided design (CAD) with

organization into cells [30,31,32]. The screening will thus be reduced to

sequences of such cells, using the topological layout features in the CAD,

rather than the geometrical features only. The test points are assumed to

be generated and selected by CAD within each cell [33,34].
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Whereas some experiments have been carried out on the comparison of ad-

jacent dies at 3 different colours [20], we here consider a procedure using

2 different wavelengths in the visible domain and 1 or 2 wavelengths in the

middle infrared (IR) domain (3 and 10 u). In other words, IC pre-cap in-

spection with infrared thermography is considered, thus allowing for

simultaneous visual, electrical and eventually thermaL testing

[35,36,37,38]. The near-IR inspection will lead to the detection of hot

spots under various testing patterns. The middle-to-long IR inspection will

localize many metallization and bonding defects, again under various electr-

ical testing patterns. The choice of the wavelengths, resolution and window

sizes will clearly depend on lithographic resolution, circuit density, and

not least substrate properties. Although IR emissivity is affected by sur-

face condition and substrate, excellent temperature resolutions can be ob-

tained both on silicium and gallium arsenide £36], thus assisting failure

locaLization when emission anomalies are observed while electrical testing

is carried on. Another advantage of this procedure is to restrict, by emis-

sivity considerations, the size of the IC cell portion activated through

electrical stimuli selection [39,51), thus leading to less complex image

patterns to be analyzed than in the visible domain. We will call sub-cell

any such IC cell portion activated through electrical stimuli.

In the remainder of this chapter, we restrict ourselves to the visual

inspection methods related to subcells, within the framework of the above

procedure. The subcell images at the various wavelengths are assumed to be

acquired through the optical field of view of a muLti-lens microscope. The

subcell images are also assumed to be thresholded and digitized on a few

gray levels.

Ll



3.4 Algorithm #1: Matching Bridges in the Topological SubcelL Layouts

(A) Principle: The idea of Algorithm #1 is not to match IC cell patterns,

but to match critical topological elements called bridges [40,41). The

bridges are those sections of the IC subcell surface which are nonredindant

for proper electrical circuit/subcell operations; in case of defects, short

circuits and conductor-substrate interface anomalies also become parasite

bridges (Fig. 2). The bridges are determined by Algorithm 41 operating on

the graph representation G of Lhe subcell as obtained from the IC image. A

simple thinning procedure ,sing local neighborhood relations is used to get

the graph representation G of the subcell, as seen under current optical and

electrical conditions. It should be noticed that this thinning procedure is

far easier to implement than any parsing of the IC etching boundaries [42J.

Smaller defects eliminated because of the thinning will be picked up by Al-

gorithm #2.

(B) Graph representation of the IC subcell (Fig. 2): The n-node graph

G=(X,U) labeled with a path algebra P can be described by its adjacency ma-

trix, which is the n x n matrix A - (a ij) with entries:

fI(x,x), label of (xi,x j) if (x.x. U

a.. if (x~ j  £ U

where * is the zero element of P, and U the order relation between nodes

(Fig. 2, Table 1). The k-th power Ak of A can be defined in terms of the

labels of paths on the graph corresponding to A, in the following way. Let

Sk. be the set of all paths of order k from node x. to node x. on the La-

beled graph G of A; then:



k k V: join operation in P (Table 1)
ij = V {i(s); siSij} where 1: product in P (Table 1)

Eah leen k Ak
Each element a.. of A is the set of names of all simple paths of order k

1)

from node x. to node x..
I I

We shall denote the strong and weak closure of a stable matrix A by

A (a*.) and A = ( .), respectiveLy. A is such that:
13

Sk=0,1,... A*k=A*(k+l)

* A*=A (n-1)
A*E V A A*A

E Identity matrix for . in P (Table 1)
- * n Ak

A = AA = V A
k=1

Each element ai of A is the set of names of all the simple paths from xi

to x.. Each element S.. of A is the set of names of all non-null simple

paths from x. to x.. If only binary labels are considered (binary pic-

tures), A is the boolean adjacency matrix of the graph G; A* has then en-

tries aij = 1 if there exist any paths from xi to xj, and aij 0 otherwise;

whereas A has aij = 1 if there exist any non-null paths from xi to xj, and

S. = 0 otherwise (see Table 1).
*1

(C) Bridges of the subcell graph G: Let G=(X,E) be the simple graph

representing the subcell whose edges have distinct labels; let H=(X,U) be

the graph with the same nodes as G, and which has two arcs (xi,x) and

(xj.,x) between each pair of nodes xi,x. which are joined together by an

edge on G; on H, the arcs (xi, x ) and (xj.,x i) both bear the name of the

corresponding edge (xi,x.) on G.

13)

_.... .. .. I1. .. "... . .... -
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An edge (xi,x j) of the simple graph G is called a bridge of G, if in

the graph obtained from G by removing this edge, the nodes xi and xj are not

connected; in Fig. 3, f is a bridge.

(D) Determination of the bridges of G: Considering H, each entry of the clo-

sure a.. of its adjacency matrix A, is the set of names of all the bridges
i)

between x. and x.. Thus, to find these bridges, we need to be able to com-

pute A or A directly. One such method is the Jordan elimination method

which can be applied to compute the weak closure A. A is the Least solution

(0) (0)(n)
of the equation Y=AY V B, if we set A 0 ) =B A, because then A = B

The steps of the algorithm are the following:

[BM = Q(k)* B(k-1)

(n) (0) (0)=A
= B~n ) k=1,2,...,n A(O=B(O=

E B U(-1) B_(k-l)*

12  B2 2
_ (k-l)*

Qk) B 22
k (k-1)B(k-1)* E

L. € 32 22J

where:

- the Blk blocks are made of elements bij, as specified below;

- the closure of an element is defined in a similar way to the closure of a

matrix;

• ~i '



- 10 -

b (k-i) ..(k-1
ik kk if jk

b W) (b(k-I))* b(k-1) i
ij= .bk )bk if i=k

b(k-) b(k-1). (k-i) * (k-i)bij ik bkk ) bkj if

Example: (Fig. 3) Here $ is the empty LabeL, and 0 the zero element in G

$ $ $ f f
3 ab C$ f $$ $ $ f f f

a$ d$$$$ $$$$ f f ff

bd $ e $ $ $ $ $ $ f f f

A= c $ e $ f $$ A* = -- $$---

$$$f$gh ffff $$
ffffl$$$

ffffl$$$;$ g$ it ff ff I$ $

Other algorithms are given in 141,43,44,45).

(E) IC testing: For each wavelength, each set of eLectricaL stimuli, and

each subcell with resulting graph G, the bridges of G are matched against

those of the reference topoLogicaL layout (CAD).

3.5 Alkorithm #2: Conutation of a figure of Merit for the

IC/Mask from a Fuzzy Language Description

(A) Principle:

1) Algorithm #2 is designed to compute for each subcell a figure of merit

P which accounts both for topological and geometrical faults in the

IC/mask, while still accounting for litographic resolution and image ac-

quisition errors. It is better suited than Algorithm #1 for the detection

of irregular growth/etching boundaries, scratches, blobs, open circuits.

Acceptance or reject of the IC/mask is on the basis of the figures of mer-

_
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it of all the subcells.

2) Algorithm #2 relies on the following elements:

(a) The topological model of the fault-free subcell as a monoid V* of a
0

context-sensitive language Lo; V0  is generated by the CAD design

software, restricted to the subcell for which electrical testing is

proceeding (all IC layers are considered).

(b) A fuzzy class membership relation P for each string x of symbols

generated in L0, 0 < P(x) < 1. The actual value of P(x) will be

derived from the subcell image, as to enhance defects, while only

taking into account those defects the sizes of which are in excess

of process tolerances and optical resolution.

Example: i) If a is a "primitive" etching shape, p(a) could be pro-

portional to the area of each such pad on the IC, as determined by

thresholding and counting of pixels. Any irregular off-shots,

blobs, partial bridges, would then affect the value of P(a).

ii) p(a) could be defined differently for various values a, to ac-

count for errors at nodes and on the line etching elements.

(c) The recursive computation of the degree of agreement P(x) of the ac-

tual subcell x, with the language Lo, where x is assumed to be gen-

erated by a fuzzy language derived from L and from the fuzzy rela-
0

tionship P; this degree of agreement is the figure of merit for the

actual layout on the IC/mask under test.

(B) Grammar G [473: Let VT be the finite set of primitives of the IC/mask

layout, including primitives associated with easily detectable geometrical

defects. We denote VT the set of finite strings obtained by concatenation
T

of primitives of VTV including the null string *. The Language L 0is a
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subset of V*, specified by the CAD design; it represents all acceptable

Layouts of the subceLL. The elements of L may be generated by the gram-

mar G = (VNVT,Pos), where VT is the set of terminals/alphabet, VN is a

set of nonte'minals, s c VN is the start symboL, and P is the finite set0

of production rules. The elements of P are rewriting rules of the form0

a - b, where a,b are strings in (VT U V N These rules are those by

which the IC subceLl layout is obtained starting with a=s.

One important property of IC's/masks, often overlooked in practice,

is that the corresponding grammar G is context-sensitive for most circuit

Layouts. G is said to be context-sensitive if the productions are of the

form a1Aa2 ' a1Ba2, with a,, a2 , B in (VT U VN)*, A in VN, B $ o, and

s * * allowed.

(C) Fuzzy grammar [46J G (VN,VT, ,s): G is derived from Go by replacing
p

P by fuzzy rewriting rules defined as a - b, where P is the grade of mem-o

bership of string b given a, or the figure of merit of b given a as ob-

tained from the subcell image. G generates a fuzzy language L for which

one can define the degree of properness P(x) of any string xcVT, valuating

to what extent it is correct w.r.t. G.

(D) Figure of merit of each subcell xcV: 1m-1

a) Let al,...,a m  be strings in (VT U 
VN and a1  1 a2,...,am _1  m

be productions in w of G. Then a is said to be derivable from a in G.

m

The string x of VT representing the actual IC subcelL is said to be in L

iff x is derivable from s. The grade of membership P(x) of x in L is de-

fined as:
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v(x) Sup Min (p(s a1),...,p(am  x))

where the supremum is taken over aLL derivation chains from s to x. Con-

sequently, the figure of merit P(x) of subceLL x is the degree of proper-

ness of the Least proper Link in the derivation chain generating the actu-

aL subceLL x, and u(x) is caLcuLated on the "best" chain.

(b) G is said to be recursive iff there is an algorithm which com-

putes u(x) recursiveLy. G is context-sensitive, so is G. As it has beeno

shown 148) that a fuzzy context-sensitive grammar was recursive, the fig-

ure of merit p(x) of the subceLL x on the IC can be computed recursiveLy.

For details about the design of this algorithm, see £48). We use it here,

and appLy it to the sequence of measured values p(ai  a i+), obtained

from the IC image as specified in 3.5 A, b.

3.6 ALgorithm #3: Attribute LabeLLed Graphs

(A) PrincipLe: In this section, we wiLL onLy suggest a third class of aL-

gorithms, without any explicit derivation of them. In the case of

IC/masks, probabiListic deformation mechanisms represent an insufficient

formalism 149). It is here suggested to consider instead a syntacticaLLy

driven random field modeL, also caLLed attribute LabeLLed graph. Instead

of Looking at bridges as in Section 3.4, jumps between nodes are con-

sidered here, with each node having a Label which, too, may be distorted

representing a topoLogicaL defect.

(B) Approach: The best current approach is the proposed error-correcting

recognition system presented in Chapter 1 of this report, and in [50).

The defects are modeled as, first, a syntactic deformation of each primi-

tive or subpattern, foLLowed next by a Local deformation. The syntactic

.. . . . . .. . . .. . .. .. .. ll.. . .. .. . .. .. . .. . I I - - I II II I I Iwl
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deformations are however assumed to be independent of the context and of

the local deformation, which is sometimes inappropriate for defects such

as short or open circuits. The detection is by an error-correcting iso-

morphism, and Bayes decision comparing the original and final graphs

(Chapter 1, and [50]).

3.7 Conclusion

This chapter presents two algorithms, and one approach for automated

pre-cap visual inspection in the suggested integrated testing framework.

Although an experimental validation is required, this testing process and

the associated algorithms are much more sophisticated than current prac-

tices and should hopefully give ideas for cost, time and yield improve-

ments in IC manufacturing.

_______________ I
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Reject, semicircular crack having

chord greater than 75% of narrowest

unglassivated metallization separation

Reject, crack < 0.25 mil separation
from operating metallization

Reject, crack > 1.0 mil
inside scribe line

5< Accept, crack

< 1.0 mil inside
scribe line

C -- Scribe grid
or scribe line

Reject, substrate crack Z

in active circuit area

Reject, crack > 3.0 mil
in length

r .j_ Figure 2010-25 from MIL-STD-883 which is an

example of visual inspection criteria for an integrated cir-

cuit. Interpretation can be subjective.
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